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Fractal Analysis of Scaling and
Spatial Clustering of Fractures

C. C. Barton

8.1. INTRODUCTION

Fractures exist over a wide range of scales, from the largest faults to microfractures,
and this range is primarily responsible for scaling effects observed in fractured-rock
hydrology and bulk mechanical properties of fractured rock (Witherspoon and others, 1979:
Thorp and others, {983; DeMarsily, 1985).

Fractal geometry is a branch of mathematics that can identify and quantify how the
geometry of patterns repeats from one size to another. The repetition of fracture patterns
over a wide range of scales is qualitatively demonstrated by the need to place an object of
known size, such as a coin, hammer, or person, into photographs or a scale bar on
photomicrographs and maps to establish scale. This is illustrated in Fig. 8.1, which shows a
series of photographs of fracture patterns whose scales, rock types, ages, and deformation
histories are different. Figure 8.1 also illustrates that fracture patterns can range from
ordered (8.1d) to disordered (8.1a—c). Fractal geometry provides a method for quantifying
the size scaling and spatial clustering of the full range of complexity found in networks of
fractures. Fractal geometry also provides a means for extrapolating fracture properties from
topologically limited samples, such as boreholes, which are one-dimensional samples, to
three-dimensional fracture networks. Finally fractal geometry can be used to determine or
constrain size scaling and spatial clustering of synthetic computer-generated fracture
networks.

Quantitative understanding of size scaling and spatial clustering is fundamental to a
quantitative understanding of fractured-rock hydrology and the bulk mechanical properties
of fractured rock. This is because fluid flow and mechanical deformation do not use
fractures at any one size scale but integrate the contribution of fractures at all scales. from
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microfractures to the largest scale of interest. While there is a power law increase in the
abundance of fractures as we move to smaller sizes (Barton and Hsieh, 1989), the
contribution of smaller and smaller fractures to fluid flow and bulk mechanical deformation
depends on the gcometry of fracture connections within the network (Barton and Scholz, in
press). For fluid flow, we must also consider the parameter of fracture volume (aperture
times length times width), which must be finite for any given volume of rock. When the
geometry of connectivity is convergent. even though there is a power law increase in the
number of smaller fractures, the contribution of fractures of smaller sizes is correspond-
ingly less important. Fractal behavior of trace length tells us how to scale the fractures of
smaller sizes. but not the refative contribution of the fracture-trace length to flow. For flow-
through fractures interconnected in parallel networks (in contrast to series networks), the
largest fractures contribute most, and the cffect of fractures at sizes less than one to two
orders of magnitude less than the scale of the problem are minimal. In natural systems. the
lower size limit may be reached even before the convergence limit. For fluid flow through
rock, there is a transition at the size scale of the pores below which scale the fracture flow
problem reduces t that of flow through a porous media whose pattern of flow has been
shown to be fractal (see Oxaal and others, 1987). Fractal bchavior of fractures also pro-
vides a basis for extrapolation in size from the scale of fracture data collection.

The concept of a representative elementary volume (REV) of rock was introduced by
Bear (1972) as a means of characterizing and extrapolating hydrologic properties of porous
media. Because the largest pore size is usually limited to a few millimeters in most rock
types, a representative elementary volume need be only some small multiple of the pore
size. Extending the REV concept to fractured rocks has been suggested by Long and others
(1985) but it is problematic because there is no characteristic size limit to fractures.
Moreover the REV concept assumes linear scaling, while fracture networks exhibit fractal
(power law) scaling. Because fracture networks are fractal, the concept of characterizing a
small part and extrapolating to the scale(s) of interest is possible, but not in the linear man-
ner of the REV concept.

Connectedness within a fracture network is particularly important to the fluid flow
properties of the network. Scaling and spatial-clustering distributions of connectedness
lead to patches of high and low conductivity. Dead-end fractures contribute to the fluid
storage capacity of the network, but not to flow across the network. Crossing and abutting
intersections permit fracture segments in between to participate in flow across the net-
work. In an attempt to quantify scaling and spatial-clustering patterns of interconnected
segments in fracture networks, scaling and spatial-clustering distributions of crossing and
abutting intersections should be analyzed.

Scales for the study of intermediate-sized fractures occurring as natural outcrops and
roadcuts range from approximately 0.5-200 m in length. Until recently the study of rock
fractures over this range has focused primarily on measuring the oricntation of the fracture
planes (for a summary. sce Barton and Hsieh, 1989). Orientation frequency is normally
plotted on rose diagrams (strike azimuth only) or stereographic projections (strike and dip),
and it often reveals higher frequencies in one or more orientations that define what are
termed fracture sets. Fractures not included in the set(s) are usually dropped from further
analysis and interpretation. Alternatively some advocate a biased sampling procedure
whereby the geologist visually judges what fracture set(s) are present in an outcrop, then
records the orientation of only those fractures.

Interpreting fracture history; the relation of fractures to folds, large faults, and other
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major tectonic features and fabrics; in sit- and paleo-principal stresses: the direction of
fluid flow through fracture networks; and mechanical properties of fractured rock are
defined traditionally in terms of fracture sets. Grouping fractures in sets defined by
orientation frequency suppresses the heterogeneity of a complex system. The reduction of
complex fracture patterns to highly ordered patterns has been practiced because the existing
mathematics could best deal with highly ordered patterns. Ordered fracture patterns are
normally found where only one or two generations of fractures are present except where
mineralization has healed early generations. Fractal gcometry 1s a mathematics especially
well-suited to quantifying and modeling highly complex as well as ordered patterns.

A complete sampling of all fractures within some designated range of length or
aperture Is necessary to provide a representative sample for fractal analysis. Unfortunately
most published geologic maps do not provide a representative sample of faults and other
fractures either because of incomplete exposure and/or because no consistent criteria were
used to show. not show, or interpolate fault traces. Often unstated criteria established during
mapping are inconsistently applied to different rock types on the same map. Thus most
published fault maps are too highly censored to permit a meaningful fractal analysis of
spatial clustering and scaling of faults.

Chapter 8 touches a broad range of issues inherent in the study of scaling and spatial
clustering of fractures, including one-, two-, and three-dimensional sampling of fracture
networks, a review of fractal and nonfractal approaches for mathematically analyzing
scaling and spatial clustering of fracture data sets, an introduction to the fractal box
methods of measuring fracture data sets, and my own approaches for generating synthetic
onc- and two-dimensional models of fracture spacing and networks. A method of dissecting
a fracture network into age generations (based on abutting relations) is presented, and this
i1s the basis for explaining the transition from ordered to disordered fracture patterns; it is
also the basis for generating synthetic fractal fracture networks. Comments on the implica-
tions of fractal behavior for the evolution of fracture networks are integrated throughout
Chapter &.

8.2. SAMPLING SPATIAL CLUSTERING AND SCALING OF FRACTURES
IN ROCK

The methods of sampling spatial clustering and scaling of fractures in rock can be
one-, two-, or three-dimensional. One-dimensional sampling is based on measuring the
spacing between fractures along traverses across surface exposures or in boreholes in the
subsurface. Two-dimensional sampling is bascd on mapping fracture traces exposed on
subplanar exposures. Three-dimensional sampling requires geophysical imaging and map-
ping of fracture surfaces in a volume of rock. To my knowledge, there are no published
studies of three-dimensional fracture networks detailed enough to permit quantitative
analysis of their spatial and scaling properties. At present geophysical-imaging methods
do not have the resolution necessary to image fractures adequately over the range of scales
(one order of magnitude or more) required for fractal analysis, although the future is
promising (Ramirez and Daily, 1987: Majer and others. 1988). A three-dimensional sample
could be constructed by interpolating between closely spaced one-dimensional samples or
between a sequence of parallel, closely spaced two-dimensional fracture trace maps. Such
interpolation is commonly done for farge faults, but usually sampling distance is too large to
allow interpolation of the smaller fractures discussed in Chapter 8. Measuring the scaling of
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fracture networks requircs mapping fractures over a wide range of size scales. Optimally all
sizes sampled can be shown on a single map: usually however as in Chapter 8, a series of
maps 1s used, with each map sampling a range of size scale.

8.3. FRACTAL MEASURE OF SPATIAL AND SCALING PROPERTIES

Fractal geometry is a branch of mathematics that provides methods for quantifying the
spatial and scaling properties of geometric data sets that are uncorrelated. positively
correlated (persistent), or negatively correlated (antipersistent) as a function of scale or
spatial distribution. Feder (1988) describes persistence and antipersistence. Persistence
means that an increasing trend in preceding increments implies an increase in the next
increment: conversely a decreasing trend in preceding increments implies a decreasc in the
next increment. Antipersistence means that an increasing trend in preceding increments
tmplies a decreasing trend in the next and vice versa. In terms of fracture spacing,
increasing persistence means increased clumping, and antipersistence leads to an even
spacing. Fractal geometry is particularly well-suited to both positively and negatively
correlated data sets. By comparison geostatistics (Journel and Huijbregts, 1978; Hohn.,
1988) are applicable only to positively correlated data sets. Fractal patterns can be highly
ordered or disordered. and this can be understood in terms of the procedures for generating
fractal patterns. as described in the discussion of Cantor dusts. Fractal geometry also
provides methods for creating synthetic analogs of natural geometries.

The geometry of a fractal pattern is represented by a fractional number, termed the
fractal dimension (D). The size scale over which a fractal dimension applies 1s bounded
by an upper and lower fractal limit. Fractal methods for analyzing spatial and scaling
properties of objects are applicable to one-, two-. three-, or n-dimensional data sets.

8.4. METHODS OF MEASURING THE FRACTAL DIMENSION OF FRACTURE
NETWORKS

8.4.1. Box Method

The box method is used in Chapter 8 to measure the fractal dimension of the spatial and
scaling distribution of fractures. The method is robust in that it is applicable to self-similar
and with certain restrictions, to self-aftine data sets (sec Chap. 4). The method is applicable
to one- and two-dimensional data sets. In principle the method is simple: A sequence of
grids, cach with a difterent cell size, is placed over maps of fracture traces, then the number
of cells intersected by fracture traces is counted. The fractal distribution is

NrD = | (la)
or equivalently

log N

- l()g(l/ri (b

where N is the number of cells containing portions of one or more fracture traces. r is the
length of the side of the cell, and the fractal dimension D is the slope of straight-line
segments fitted to the N, 1/r points plotted on logarithmic axes. A derivation of Eq. (1) 15
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given by Feder (1988) and by Pruess (Chap. 3). A schematic diagram of the counting
procedure and the fractal plot are shown in Fig. 8.2.

Theoretically the fractal dimension is taken at the limit where the cell size goes to zero
(Hausdorff. 1919) as discussed by Pruess (Chap. 3). This is not possible when analyzing real
data sets with finite lower size limits. However, in Chapter 8 and my previous papers, the
distribution of cell sizes is logarithmic, so there are progressively more smaller sized cells.

Fitting straight lines to points on the fractal plot is done using a least squares linear
regression. Performing the regression in log-log space leads to a logarithmic weighting that
favors smaller cell sizes. Breaks between lines of different slopes are located by visual
inspection. Usually upper and lower fractal limits of data are exceeded by cell sizes that are
too large and too small. These extra points are sequentially stripped off the ends of the plot
until the slope of the line fit to the data stabilizes. This is a nonrigorous method that could be
accomplished by such rigorous statistical method as jackknifing or bootstrapping, although
the improvement would probably be minimal. The slope of the line is the fractal dimension,
and the end points of the line are the upper and lower fractal limits. The least squares method
of fitting a straight line to data permits calculating a goodness of fit by means of a
correlation coefficient ranging from 0, for no correlation, to t for a perfect fit. | have tested
the box method on fractal figures of known dimension (Koch curves) and tound the error in
dimension to be as great as 0.05. To improve the accuracy and reproducibility of the box
method. | explored variations of the box method, as described in the following section.

8.4.2. Box-Rotare Method

In practice the procedure of overlaying grids is complicated by the need to overlay the
grid so that for each cell size the minimum number of cells is occupied, a boundary condi-
tion stated by Hausdorff (1919) and incorporated into the derivation of Eq. 1. One way of
accomplishing this 1s to rotate the grid relative to the data until for cach cell size, the
minimum number of cells 1s occupied. The effect of grid rotation on the fractal dimension
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FIGURE 8.2. Ilustration of the box method of measuring fractal dimension by overlaying a sequence of grids,
each with a different cell size. For fractal data sets, a plot of the Tog of the number of occupied cells (M) versus the
log of inverse cell size (1) vields data points that can be fit by a straight line whose slope is the fractal dimension
(D). as stated in Eq. (1)
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ofasingle straight line (whose true dimension is 1.000 . . . .)is shown in Fig. 8.3. Here the
grid was rotated to the angle 6, and then the sequence of cells was counted. In Fig. 8.3, the
increment of rotation angle 8 is 2.5 degrees, and we can show analytically that for a single
straight line, the minimum number of cells is occupied when 6 equals 0. 45, or 90 degrees.
Atother orientations. additional cells are crossed: the number of such cells is given by the
following equation:

a
Ny = N (r) + !:r(sin())J (2)
Where N(r) is the number of boxes crossed of size r. N (r) is the number of boxes crossed of
size r when 8 = 0. « is the length of the line (equal to | for unit length), and brackets [ ]
indicate the integer part of the function within the brackets.

The consequence of not properly orienting the grid in the analysis of a straight line for
cach cell size is the introduction of an error of as much as 0.06 in the fractal dimension
(Fig. 8.3). A single straight line is a worst case test because it is so highly anisotropic. Note
that tor complex shapes (Koch curves. for example), the equation is much more complicated
than Eq. (2). Tests on Koch curves show that the error introduced when the grid is not
oriented so that N is a minimum is as much as 0.05. When N is a minimum for each cell
size, the error can still be as much as 0.02, because cells are squares that arc not
geometrically compatible with the Koch curve. whose angles arc 60 and 120 degrees.
Therefore for complex patterns, the box-rotate method is expected to have an error of
approximately 0.02.

8.4.3. Box-Flex Method

Pruess (see Chap. 3) found that decreasing the increment between cell sizes so that
tens, hundreds, or even thousands of cell sizes are used eliminates the need to orient grids
properly. I tested Pruess’s approach on shapes of known f{ractal dimension (Koch curves)
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FIGURE 8.3. A plot of the variation in fractal dimension (D) for a straight line (whose dimension is 1) as a
function of the orientation 8 of the line measured in increments of 2.5 degrees. Note that the minimum number of
cells. and therefore the true D, is occupicd where 8 = 0, 45, und 90 degrees.
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and found that the error was only 0.005 when using approximately 50 different cell sizes. To
achieve small increments in cell size, 1t 1s necessary to allow the outer boundaries of the
grid to expand and contract slightly because there must always be an integer number of
boxes in the grid; there can be no fractional boxes. I term this the box-flex method and in
Chapter 8. fractal dimensions are rounded up to the hundredth’s decimal place.

844 Box-Density Method

In the box-counting methods just described. the size-scaling properties of a data set are
measured by simply counting the number of occupied cells. La Pointe (1988) used a
variation of the box method where the number of blocks bounded by fractures contained in
each cell are counted. I call this the box-density method: it measures the spatial-clustering
variation in a data set.

The procedure is to overlay a sequence of grids, then count the number of data points in
cach occupied cell. For each cell size, the maximum count is divided by the number of
cells on one side of the grid. This value (Z) 1s then used to normalize the data such that for
cach cell tn the grid, the sum of the normalized count s stored as N. The fractal dimension is
calculated using Eq. (1) where N is this normalized value. A fractal dimension measured
in this way ranges between 0-3.

8.5. PREVIOUS FRACTAL STUDIES OFF THE SCALING AND SPATIAL
DISTRIBUTION OF FRACTURES

Barton (1990), Velde and others (1990). Barton and Zoback (1992), and Manning
(1994) reported fractal analyses of {racture spacing along a line sample. Barton (1990)
reported on the spacing pattern of quartz/gold veins in cores from the Perseverance mine,
which 1s described in detail later. Velde and others (1990) measured the fractal dimension in
terms of a probability of finding a fracture-free zone in the following length unit to be
measured. To study the effect of anisotropy in fracture patterns, rescarchers measured line
samples at various orientations on two-dimensional f{racture trace maps. The fractal
dimension was observed to vary by as much as 0.33 for the most anisotropic of their fracture
trace maps. The range of fractal dimension reported was 0.10-0.68. Visual observation of
their fracture trace maps suggest that the very low fractal dimensions they obtained (all but
four values less than 0.50) may be due to the sparseness of their data sets. Barton and
Zoback (1992) fit the frequency of fracturc-spacing intervals versus spacing interval from
the Cajon Pass well, California, with a power faw with a scaling exponent of 1.03. Note that
their analysis of fracture spacing is different from that presented in Chapter 8 and other
studies cited because they did not analyze a pattern of fractures with a box-counting
procedure: rather they fit a spacing interval versus frequency plot with a power law. In such
an analysis, the spatial sequence of fractures is lost, and results can not be compared with
those reported elsewhere in Chapter 8. Manning (1994) reports on spacing metamorphic
veins along linear transects in a varicty of geologic settings. He finds the fractal dimension
to range between 0.25-0.46 for sites in continental crust and to be 0.81 fo hydrothermally
altered oceanic crust.

There have been several published fractal analyses of fracture trace maps. The first
study was by Barton and Larsen (1985), who reported fractal dimensions for three fracture
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patterns mapped at nearby locations in the same Miocene volcanic tuff unit at Yucca
Mountain, Nevada. They used the box method and reported fractal dimensions ranging
from 1.12-1.16. These values were calculated for cell sizes at and below the shortest
fracture length and thus resulted in an improper analysis, unrepresentative of the fracture
network. These same three patterns were reanalyzed using the box method over a wider
range of cell sizes. which in part exceeded the size at which the fracture pattern was
completely covered. by Barton and others (1986) along with four other fracture patterns
and a fault map of the southern half of Yucca Mountain. Fractal dimensions of 1.5-1.9 were
reported. The same three maps were reanalyzed by Barton and Hsich (1989) using the box-
rotate method in which again cell sizes in part exceeded the size at which the fracture
pattern was completely covered, and fractal dimensions ranging from 1.6-1.7 were
reported. 1 analyzed them yet again for this chapter. using the box-flex method over an
appropriate range of box sizes, and I found the dimension ranges from 1.38—1.52. For the
reasons stated n Section 8.4.3, the box-flex method provides the most accurate results.

Chiles (1988) used the box method to analyze fracture patterns mapped on drift walls
in a granite mine. The drift walls were 2 m high and 50~100 m long. The minimum fracture
trace length mapped was 0.2 m. Because of the limited height of the walls and a lower trace
length cutoff at 0.2 m, the range of scales sampled vertically is considerably less than one
order of magnitude. Examining the fractal plots in Chiles (1988) reveals that he permitted
the cell size to be as small as 0.01 m, smaller than the smallest fracture trace (0.2 m) and
thus improperly analyzed his maps in the same manner as Barton and Larsen (1985). A
better range of box sizes for his maps would be 0.2-0.5 m rather than the 0.01-10 m he
used. A fractal analysis of the spacing pattern of fractures along a line sample 50-100 m
long (with the smallest cell size two times the shortest distance between two fractures
and the largest cell size one-half the length of the longest distance between two fractures)
would be a more appropriate way of analyzing data such sets as Chiles's.

La Pointe (1988) introduced the box-density method to the analysis of fracture trace
maps. He counted the number of blocks bounded by fractures per cell rather than the
number of fracture traces. He analyzed the three maps (reproduced in Figs. 8.7a-¢) at
Yucca Mountain published in Barton and Larsen (1985). a map (reproduced in Fig. 8.7i)
from the Lannon area, Wisconsin, published in La Pointe and Hudson (1985), and several
computer-generated synthetic maps. Instead of analyzing entire maps, he analyzed a strip
taken as a representative subset of the map. His fractal dimensions for strips across the maps
in Fig. 8.7a—c are 2.52, 2.37, and 2.69, respectively.

Hirata (1989) reported fractal dimensions for the pattern of seismogenic faults at
various locations in Japan. He used the box method and reported fractal dimensions ranging
from 0.72-1.60. Visual inspection of his maps reveals that those maps with fractal
dimensions less than 1.5 contain very few fractures. and these are probably censored data
sets when compared-to the spatial density of fractures reported by King (1983) for
seismogenic fault patterns. Also Hirata’s fractal analyses include only five cell sizes. Based
on my experience, the error in determining a fractal dimension using the box method with
only five box sizes is large. as much as 0.15.

Korvin (1989) investigated the size distribution of fault-bounded blocks at the bol-
tom of the southern end of the Gulf of Suez rather than scaling or spatial distributions of
fractures traces. His plots of the cumulative frequency of block size can be interpreted as
fractal. However because of the rollover at small block sizes and other changes in slope on
some of his log-log plots. he interprets his plots as demonstrating nonfractal behavior.
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Nonlinear behavior on a log-log plot does not necessarily mean that the data 1s nonfractal;
the data may be scale variant or multifractal. I interpret the rollover he shows as due to data
omission at smaller block sizes. His data can be fit with one or more straight-line segments
whose slopes are the fractal dimension(s), although I have not done this.

8.6. ONE-DIMENSIONAL SAMPLING AND ANALYSIS OF FRACTURE
NETWORKS

8.0.1. Sampling

Although fracture networks are three-dimensional, it is difficult or impossible o
obtain a complete three-dimensional sample. as previously discussed. Borcholes. which
provide one-dimensional samples of fracture networks, are the most frequently used method
of sampling the spatial distribution of fractures in the subsurface. Straight-line, or scan-line
traverses along surface outcrops are also one-dimensional samples. Both provide spacing
from one fracture to the next. If orientation data are provided, then spacing between
fracturcs of the same set can be studied (Barton, 1983), but this is not normally done.
Mecthods of one-dimensional fracture sampling at the surface can be found in La Pointe and
Hudson (1985) and Barton (1983). Mecthods of sampling subsurface fractures by direct
observation in drill core are described in Kulander and others (1979) and by geophysical
methods 1n drill holes in Paillet (1991).

8.6.2. Nonfractal Analvsis Methods

There are a number of precedents to any study of scaling and spatial distributions of
fractures in rock. Prior to the advent of fractal geometry, scaling and spatial properties were
sampled. quantified. and modeled. However data collection was limited primarily to one-
dimensional (lincar) sampling of spacing between fractures intersected along a traverse,
and mathematical treatments were for the most part limited to such lincar samples. Few
studies have measured the spacing-frequency for individual sets (Barton, 1983): most
studies simply include all fractures encountercd along the sample without regard for, or
knowledge of, orientation, size, or other discriminator (for example, Priest and Hudson,
1976). In studies were fractures are grouped into sets based on orientation, the sampling
interval consists of a traverse oriented perpendicular to fracture planes (Barton. 1983).

The mathematical analysis of spatial distribution in carly papers was limited to calcu-
lating an arithmetic mean, and this approach persists to the present (summarized by Barton,
1983). In a series of papers, Priest and Hudson (1976, 1981), Baccher and others (1977), and
Hudson and Priest (1979, 1983) treated frequency plots of fracture spacing as lognormal or
negative exponential distributions. The cumulative probability plot for fracture spacing was
introduced by Baccher and others (1977) and explored by Barton (1983) for two fracture sets
in the same bed. Cumulative probability plots generate a mean and standard deviation, and
like all other previous approaches, these simply plot the frequency of various spacing
intervals without considering the sequence from one fracture to the next. La Pointe (1980)
introduced and explored the use of semivariograms as a mecthod for analyzing fracture
spacing along a lincar traverse (scan line). Semivariograms plot the second-order moment of
the number of fractures per unit length of the scan line versus the length of the sampling
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increment over some range of increment size analogous to cell size in the box method.
Some semivariograms of spacing frequency reveal power law distributions where the power
is a fraction rather than an integer. Such semivariogram plots can be recast into fractal plots
by plotting the semivariance against sample increment size in log-log space and calculating
the fractal dimension from the slope of straight line(s) fit to the points. The approaches just
described are limited to spacing data collected along 4 line sample.

8.6.3. Fractal Analvsis of the Spatial Distribution of Quart=/Gold Veins in Exploratory
Cores from the Perseverance Mine. Juneau. Alaska

The spacing between gold-bearing quartz-filled fractures (veins) intersected by explor-
atory drilling from tunnels in the Perseverence mine provides a data set for analysis. Figure
8.4 shows a vertical cross section of the mine. the drilling pattern, and the location of
quartz-filled fractures above a specified assay value along bore holes. Qualitatively the
spacing has no discernible pattern or structure.

A fractal analysis was performed on the spacing distribution between veins on 23
cores, each approximately 90 m long and intersecting approximately 40—-60 veins. The box-
rotate method was used, with cach drill hole rotated horizontally to minimize the number of
occupiced cells (see Section 8.4.2). A typical fractal plot of spacing is shown in Fig. 8.5, and
the range of fractal dimensions is given in Table 8.1. The range in fractal dimension is 0 4] —
0.62, with goodness-of-fit coefficients greater than 0.98,
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FIGURE 8.4, Vertical cross-section showing the fan pattern of core drilling from an adit in the Perseverence
mine, Juneau, Alaska. The position and thickness of gold-bearing quartz veins Alling fractures along each dril]

\5—41

hole are shown by tick marks of appropriate width.
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TABLE 8.1. Fractal Spacing Distributions of Quartz/Gold Veins
in Exploratory Cores from Perseverance Mine, Juncau, Alaska

Drill Hole Number  Fractal Dimension Drill Hole Number  Fractal Dimension
1-26 .52 4-14 (.48
1-27 0.45 4-202 (.51
[-28 0.52 5-5 0.45
1-29 0.41 5-38 (.58
2.2 0.43 5-39 (.51
2-23 0.58 5-40 .62
3-3 (.55 5-41 .42
3-20 (.54 7-7 0.47
3-21 .49 7-18 (.59
44 0.51 7-19 0.55
4-12 0.46 9.3 (.47

+
=

0.48
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The significance of the fractal behavior of spacing between veins follows. If the
spacing of veins 1s uncorrclated, then the dimension is 0.5. If the veins is evenly spaced,
then the fractal dimension is 1.0. As the dimension decreases from 0.5 to 0.0, spacings
become increasingly clumpy, so that at D = 0, data are clumped to one point. By analogy to
fractional Brownian trails, this behavior is described as having a positive correlation or as
being persistent (Mandelbrot, 1983). As the dimension increases from 0.5 to 1, spacings
become less clumpy. more evenly spaced. Again by analogy to fractional Brownian trails,
this behavior 1y described as having a negative correlation or as being antipersistent
(Mandelbrot, 1983). The range of fractal dimension reported in Table 8.1 indicates that vein
spacing can be uncorrelated, persistent, or antipersistent. The average value for all samples
listed in Table 8.115 0.50, which indicates that on average. the vein spacing is uncorrelated.
The concept of a pattern within randomness can be appreciated by constructing a fractal
Cantor dust model for fracture spacing.

8.6.4. Fractal Cantor Dust Model for Fracture Spacing

A Cantor dustis a fractal set whose spacing properties arc an appropriate model for the
spacing properties of fractures. Generating a Cantor set is described in Mandelbrot (1983).
and itis illustrated in Fig. 8.6. Begin with a solid straight line (or for illustrative purposes, a
bar) and iteratively remove one or more pieces following a prescribed procedure. The
procedure in Fig. 8.6a s to remove the middle one-third of the remaining pieces iteratively.
This produces an ordered triadic Cantor dust whose dimension is defined by Eq. 1, where
N is the number of remaining picces. and r is the length of the picces relative to the unit
length. In this case, N equals 2 and 7 equals 4, and so D equals log (2)/1og (3) or 0.6309.
The dimension of a Cantor dust is determined from the first generation, and this is the
dimension for all generations. The lower size limit of the range over which the dimension is
valid is the length between the two closest pieces; thus with cach additional generation, the
lower limit is extended. Ordered tractals are alternatively referred to as regular, symmetric,
or deterministic fractals.

This Cantor dust is not a very good analog because it is too regular and its fractal
dimension is slightly greater than the values we observe for spacing gold veins. Now we
introduce randomness to the iterative process of forming a Cantor dust by randomly
selecting which of the pieces to remove, N and r remain the same, and therefore so does the
fractal dimension 0.6309. This disordered triadic Cantor dust is a much better model for the
spacing of gold veins, as can be scen in Fig. 8.6b. Disordered fractals are also referred to as
stochastic or random fractals. This example illustrates how and why fractals can have
patterns within randomness. The fractal dimension of Cantor dusts falls between 0—1. For a
given value of r, D increases from zero tor N = Tto | tor N = r.

In strictest mathematical terms. the iterative procedure is repeated an infinite num-
ber of times to the limit as r approaches zero. Natural data sets always have some lower
cutoff—a pereeptibility limit—and so the number of objects is finite. Therefore for
gencrating Cantor dusts to simulate or medel spatial statistical properties of natural
systems, normally only 5-10 iterations are needed. The fifth generation of the random
triadic Cantor dust shown in Fig. 8.6b qualitatively evokes the pattern of fracture spacing.
including variation in vein width. and quantitatively matches the spatial statistical proper-
ties of other dusts with the same {ractal dimension.

The pattern of fracture spacing is controlled by unknown boundary conditions of a
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FIGURE 8.6. Triadic Cantor dust, first five

"“ I” Il I "| II"I cenerations; D = 0.6309. (a) Ordered:

(b) disordered. (Modified from Smalley and
B others, 1987, Figs. 1 and 2).

complex and unknown physics that underlies the generation of fracture arrays in rock.
Nevertheless it 1s likely that veins formed by a process akin to that of Cantor dust formation,
whereby initially large blocks are broken into smaller blocks by sequential fracturing, as
demonstrated for one of the two-dimensional maps that follow. The narrow range of fractal
dimension (0.41-0.62) for vein spacing suggests that one physical process operated within
the imits of scale sampled. Like other branches of mathematics, fractal gcometry does not
provide a physical or mechanistic understanding of the fracture process. Yet is provides a
mathematical model and hence some insight as well as a quantitative description of the
spatial properties of vein spacing. For fracture spacing. it suggests a mechanism by which
larger blocks are reduced to smaller blocks by sequential fracturing, whereby survivability
of large blocks (large spacings) is small. This 1s the mechanism revealed by dissecting
fracture network maps. as described in Section 8.7.

Any number of Cantor dust models can be constructed by varying N and r to match the
fractal dimension of the spacing and variation in width of veins in each drill hole. The
random Cantor dust in Fig. 8.6b is a rcasonable model for vein spacing in drill hole 5-40
(Table 8.1) because fractal dimensions are very close.
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8.6.5. Two-Dimensional Sampling and Analysis of Fracture Networks

Maps of fracture traces exposed on planar surfaces are two-dimensional samples of
fracture networks. Such subhorizontal exposures, ranging in area from less than | m? to
more than 5000 m-*, are called pavements (Barton and Larsen, 1985: Barton and Hsieh,
1989): here the usage is extended to include subvertical and other inclined planar exposures.
There are few published maps of fracture trace patterns at the scale of pavements: the only
such published maps that 1 know of are contained in the following seven papers: Kolb and
others (1970) mapped fractures in a quartz monzonite near Cedar City, Utah: Segall and
Pollard (1983a, 1983b) mapped fracture traces on glacial pavements in the Givens Grano-
diorite in the Sierra Nevada, California; La Pointe and Hudson (1985) mapped fractures on a
auarry floor in the Niagara Dolomite at Lannon. Wisconsin; Olson and Pollard (1989)
mapped fractures in the Rico Limestone near Mexican Hat, Utah; Barton and Hsich (1989)
mapped fractures in the Tiva Canyon member of the Paint Brush Tuff at Yucca Mountain.
Nevada; and Hill (1990) mapped fractures in the Aztec Sandstone in southern Nevada. All
other published maps that I am aware of do not adequately sample the fracture network
because one dimension of the map is too small [for example, mine wall maps (Chiles, 1988)]
or because the range in the size of blocks bounded by fractures was considerably less than
an order of magnitude. An optimal map covers an area large enough to include both ends of
most of the largest traces exposed and includes at least two orders of magnitude in the length
of fracture traces mapped. The maps analyzed in Chapter & only approach this optimal size.

Eight maps (Figs. 8.7d-g. j. m, n. and q) were prepared as a part of this study. and
nine (Figs. 8.7a—c, h, i, k. I, 0, and p) are taken from the literature.

} 2 3 METERS a |

FIGURE &.7. Fracture trace maps at various scales for 17 sites (8.7a—q). Fractal dimensions and summary
descriptions of each site are given in Table 8.2
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8.0.6. Fracture Trace Maps

Fracture trace maps referred to by tigure number are shown in Fig. 8.7. A summary of
parameters and sources for each map is given in Table 8.2. Columns in Table 8.2, from
left to right, are as follows: map number, fractal dimension (box-flex method), location.
rock unit designation and rock type, age of rock, scale at which fractures were mapped in
the field, length of shortest fracture, length of longest fracture, and publication references.
All maps are planar or subplanar, subhorizontal slices through networks of steeply dipping
fractures except the map in Fig. 8.7n, which is subvertical, and maps in Figs. 8.7} and q.
whose original orientations arc unknown because the rocks were not in place at the time of
_ the mapping. Several types of rock fracture are represented in this collection. Fractures on
maps in Figs. 8.7a—1, |1, and n formed primarily as joints, based on the absence of shear
offset across them. Fractures on the map in Fig. 8.7 formed as deformation bands of
reduced grain size duce to shear. Fractures on the map in Fig. 8.7k formed as bands of
closely packed grains across which there 1s no demonstrable shear; their mode of origin is
unknown at this time (Hill, 1990). Fractures on maps i Figs. 8.7m, o, and p formed as
faults. Faults on the map in Fig. 8.7p are transform faults. Fractures on the map in Fig. 8.7q
are traces of fluid-inclusion planes as viewed in a thin section, and these exhibit no shear
offset across them.
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8.6.7. Non Fractal Analvsis Methods

I'am not aware of arcal or volumetric analyses of scaling or spatial characteristics
of two- or three-dimensional fracture maps. Previous studies analyzed line samples across
two-dimensional maps (Hudson and Priest, 1979, 1983: and La Pointe and Hudson. 1985), a
method that reduces a two-dimensional sample to a one-dimensional sample. An advantage
of the fractal approach is that the data sample can be analyzed linearly, areally, or
volumetrically, as appropriate to the sample.

Based on line samples of two-dimensional data sets, a number of conceptual models
and synthetic fracture network generators have been proposed, all of which assume that
centers of fractures are distributed in a Poisson manner; that is, there is no spatial
correlation (Conrad and Jacquin, 1973; Baecher and others, 1977; Schwartz and others,
1983; Robinson, 1984 Dershowitz. 1984: La Pointe and Hudson. 1985; Long and others,
1985; Watanabe. 1986). None of these models or generators incorporates tractal scaling and
spatial clustering observed on fracture network maps. Scaling is either omitted, that is, all
fractures are treated as the same length, or a log-normal trace-length frequency distribution
1s used instead of a fractal power law trace-length frequency distribution. Barton and Hsieh
(1989) present the case for fractal power law trace-length frequency distributions. The range
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of scales incorporated into published models and generators is usually less than one order of
magnitude, which is too limited to provide a realistic model of nature. Spatial clustering if
allowed for is either Poisson or parent—daughter (Chiles, 1988), neither of which are good
analogs to fractal spatial clustering. Madden (1973) studied the effect of scale and applied
the renormalization group approach for modeling the spatial distribution of natural and
induced microfractures in rock. This approach is closest to a fractal approach.

8.0.8. Fractal Analysis of Scaling and Spatial-Clustering Distributions of Mapped
Fracture Traces

The fracture trace maps (Figs. 8.7a—q) were analyzed using the box-flex method,
which measures both scaling and spatial clustering. The range of cell sizes used is no
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smaller than the shortest trace and no larger than the size at which the number of occupied
cells is equal to the number of cells. Even with these limits on cell sizes. rollovers are
common at both ends of the fractal plots, which I interpret to be a boundary phenomenon as
we approach the upper and lower size limits of a data sct. Rollovers were removed from
fractal plots by the procedure of the least squares fit to the data as previously described, and
the fractal dimension was calculated. Fractal plots of the number of occupied cells versus
the inverse of the cell size is shown for the box-flex method in Fig. 8.8, Data points arc
shown for a few of the spaced best-fit lines to provide visual confirmation of the goodness
of fit. Measured by a correlation coefficient. straight-line fits to the data are better than
0.99, where 1.0 is a perfect fit. The range of scales sampled on any one map is between -2
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orders of magnitude. The total range of scales sampled in terms of cell size 1s approximately
0.0002-142,900 m, nearly 10 orders of magnitude.

The fractal dimension for each of the fracture trace maps is shown in Table 8.2. Results
of the box-flex analysis show that the fractal dimension ranges from 1.32—1.70. Results for
the Yucca Mountain maps show that there can be some change in fractal dimension within a
stratigraphic unit over short lateral distances between map locations, on the order of a few
tens of meters (Figs. 8.7a—c) or over longer lateral distances between map locations, on the
order of a few hundred meters (Figs. 8.7d—f). There is also a difference between different
stratigraphic unit—sec Fig. 8.7¢. The difference from one stratigraphic unit to the next
arises because fractures at Yucca Mountain are stratabound at the pavement scales, with
individual stratigraphic units or packets of units having different fracture patterns (Barton
and Hsieh, 1989). Fractures at the scale of Fig. 8.7m are on the scale of hundreds to
thousands of meters, and these cut through many stratigraphic units, including those 1n
Figs. 8.7a-g; the fractal dimension of faults in Fig. 8. 7m is 1.50, which is nearly the
average (1.55) of values found for fractures in individual units at pavement scales through
which they cut.
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There are at least three fracture mechanisms in the 17 maps analyzed. Fractures on
maps in Figs. 8. 7a-1, 1. n, and q formed primarily as joints; fractures on maps in Figs.
8.7m, 0. and p formed as faults. Those on the map in Fig. 8.7) formed as deformation bands
by grain size reduction in shear: and those on the map i Fig. 8.7k formed as deformation
bands by more closely packing grains without grain size reduction or demonstrable shear.
Table 8.2 reveals that there is apparently no correlation between mechanisms of fracture
genceration and the fractal dimension, This suggests that geometrical constraints on scaling
and spatial clustering are independent of the mechanics that divide volumes of rock by
fracturing. The narrow range in the fractal dimensions suggests an underlying physics
acting over the entire range of scales investigated. The narrow range of fractal dimension
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also suggests that geometrical scaling constraints and a common physics apply to a wide
range of rock types, ages, and deformation histories represented by maps analyzed in this
study.

8.7. DEVELOPMENT PATTERN OF FRACTURE NETWORKS

Fracture networks evolve from initially ordered to increasingly disordered patterns as
discussed later. Fracture networks become more complex with time as new fracture
generations are added to those that already exist. Fractures generations form during discrete
episodes, each of which records a discrete chapter of the tectonic history. Most fracturing
episodes are not accompanied by major tectonic deformations, such as folding and faulting
(for example, see Barton, 1983). For fractures in a network formed as joints, the network
can be disarticulated into generations of joints on the basis of abutting relations—younger
fractures abut older ones. Barton and others (1986) first reported this approach for analyzing
maps of joints patterns. As a typical example, the map in Fig. 8.7h was disarticulated in this
way, and fractures of the same generation are given the same color (see Fig. 8.9). Note that
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this approach assigns each fracture to the oldest possible generation. This interpretation of
abutting relations is based on detailed observations of fracture intersections during pave-
ment mapping. Alternative interpretations, such as the origin of multiple fractures from a
shared origin or the chance passing of a younger fracture across the end of an older fracture,
are not supported by my field observations.

Analysis of fracture characteristics from one generation to the next (see Figs. 8.9a—t)
reveals the following general pattern of fracture network development. The first-generation
fractures (see Fig. 8.9a) are long, subparallel, and network connectivity is poor. Second-
generation fractures are shorter and abut first-generation fractures, generally at high angles,
to form mostly large polygonal blocks (see Fig. 8.9b): network connectivity is improved.
Fractures of subsequently younger generations (sce Figs. 8.9b—t) are generally shorter,
more diversely oriented, and increase network connectivity greatly. Younger fractures
generally define small., irregular polygonal blocks bounded by older fractures. Analyzing
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maps in Figs. 8.7a—d, 1. and p reveals the same pattern in network evolution. Analyzing
maps in Figs. 8.7¢c—g, i. n, and q reveals that inadequate exposure or mapping of fracture
intersections or restarting the evolution by mineral infilling of previous generations renders
the approach inoperable. Specifically it s inappropriate to use this approach on intersecting
deformation bands (see the maps in Figs. 8.7j and k) and intersecting faults (sec the maps in
Figs. 8.7m and o) because younger faults truncate older fractures. Note however, that first-
gencration nonintersecting faults (see the map in Fig. 8.7p) are long and subparallel, as are
first-gencration joints shown in Fig. 8.9a.

The evolution pattern should begin anew when mineral infillings mechanically heal
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previous fracture generations. This predicts that one or more stages of infilling are required
to permit development of highly ordered fracture patterns composed of more than one
or two generations of fractures. Highly ordered fracture patterns are not observed in the
stratigraphic section at Yucca Mountain, for example, where there has been little fracture
healing by mineral infilling (Barton and Hsieh, 1989).

The spatial distribution of fractures within the network evolves as fractures are
sequentially added to the network. The change in the box-flex fractal dimension during the
cvolution of the network shown in Fig. 8.9 is plotted in Fig. 8.10. The fractal dimension
ranges from 1.29 for the carliest stage of network development to 1.50 for the complete
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network. Note also that connectivity within the network is low during initial stages of
development and increases as more fractures are added.

During network evolution. larger blocks are preferentially broken by subsequent
fracturing (see Figs. 8.9b—f): continuing this process reduces the range of block sizes. In
fault gouge, comminution by grinding also produces a fractal distribution of particle sizes
with a fractal dimension of 1.6 over six orders of magnitude in scale (Sammis and Biegel,
1989), but it docs not preferentially break up larger particles. The physics of grinding
involves more than fracturing: In grinding the rotation and translation of particles produces
large particles mechanically 1solated from one another by smaller particles, and this reduces
the probability of large particles being further broken up (Sammis and Biegel, 1989).

8.7.1. Percolation Threshold for Fracture Trace Maps

Fluid flow through a fracture trace network requires connectivity across the network.
Connectivity for porous media has been studied using site percolation models (for a review,
see Feder, 1988). An important property of percolation models is the percolation threshold
below which connectivity is confined to a finite region (cluster) and above which connec-
tivity extends across the medium (spanning cluster). For two-dimensional sitc percolation
models, the spanning cluster always has a fractal dimension of 1.89 (Feder, 1988). By
analogy to such models. I propose that the fractal dimension at the percolation threshold tor
fracture trace networks is approximately 1.35, based on the fractal dimension of the network
consisting of the first two fracture generations shown in Fig. 8.9b. Note that the fracture
trace networks in Fig. 8.7 above the percolation threshold have fractal dimensions greater
than 1.35. except Fig. 8.7p, which is below the percolation threshold and has a fractal
dimension of 1.32.
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8.7.2. Generating Synthetic Fracture Networks

The evolution of fracturc patterns just described is the basis for our computer
generation of synthetic fracture networks (Barton and others, 1987). We have developed
computer code to generate synthetic two-dimensional fracture trace networks by randomly
selecting values from frequency distributions of fracture trace length, spacing, orientation,
crossing. abutting, and dead-cnd fracture intersection distributions obtained from analyz-
ing our fracture trace maps. The procedure 1s a two-dimensional analog to gencrating a
disordered Cantor dust. in that spatial correlation is built in. This is fundamentally different
from a Poisson process. which is uncorrelated and produces fracture trace patterns with a
dimension of 2.
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The basts for generating synthetic networks is the observation that fracture networks
become more complex with time as younger, more diversely distributed fracture genera-
tions arc added to previous generations. To define the distribution for cach generation. 1
analyzed the sequence of fracturing in maps in Figs. 8.7a—d, and h. Relative age of the
fractures 1s determined by abutting relations (younger abut older ones), as previously
described and illustrated in Fig. 8.9. Our synthetic networks are generated by randomly
selecting values of trace length, spacing, orientation, and terminations from those distribu-
tions particular to each generation. All gencrations after the first arc initiated along traces
of the preceding generation. This procedure produces synthetic networks with appropriate
statistical distributions, including fractal scaling and spatial-clustering distributions. This
procedure is true to the observed natural evolution of fracture networks and represents an
advance beyond the Poisson process used by Dershowitz (1984), Long and others (1985).
and Chiles (1988). Box-flex analysis of the synthetic network is used to verify that the fractal
dimension of the synthetic network falls within the range of 1.3-1.7, which we find for
fracture networks mapped in the field. Refining this approach for generating synthetic
fracture networks should include further conditioning the network to observed data.

8.7.3. Extrapolating from One- and Tivo-Dimensional Samples

A most important characteristic of disordered, nonsymmetric, self-similar fractals is
that their dimension as measured by volumetric, areal, and linear samples is cach.
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respectively, onc less than the former. For example, the fractal dimension of an areal shice
through a volumetric fractal of dimension 2.6 is 1.6, while that of a line sample is 0.6. Note
that this relation docs not hold for ordered fractals: for fractals with symmetry, such as
Serpinski carpets, which are arcal slices through Menger sponges (Mandclbrot, 1982), and
for self-affine fractais.

As previously stated. drill holes. that is, line samples, are the most common mode of
sampling scaling and spatial-clustering distributions of fractures in rock. Yetit is two- or
optimally thrée-dimensional characterization of these properties that is necded as input to
fractured rock hydrology and mechanical deformation models.

Analyses of one- and two-dimensional samples in Chapter 8 indicate that when
fracture networks are shown to be fractal, it is appropriate to extrapolate from a one-
dimensional sample to two dimensions. The fractal dimension of 23 lincar samples of the
spacing of veins at the Perseverence mine in Juncau. Alaska, ranges between 0.41-0.62.
with an average of 0.50. while the dimension of an arcal sample of the veins (see the map
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m Fig. 8.7n) is L.48—almost exactly an integer dimension more. as expected for dis-
ordered, nonsymmetric. seif-similar fractal systems. Extrapolating the vein spacing to three
dimensions predicts a volumetric fractal dimension of approximately 2.50, but this cannot
be veritied because there are no three-dimensional maps of the vein networks. Note that this
approach averages any directional anisotropy present in the fracture network and therefore
should be considered a first-order measure of the scaling properties of fracture networks.

Extrapolating to smaller sizes is also possible. Qualitative observations reveal that the
number of fractures in rock continues to increase to the scale of microfractures. Fractal
analysis of the smallest areas represented in this study (see the map in Fig. 8.7q) reveals that
the fractal dimension (D = 1.58) at that size falls well within the range of 1.32-1.70 found
over the range of scale of all other maps.

8.8. DISCUSSION

It fractal analyses of future fracture maps at different scales and locations have the
same range as results just presented. then it is acceptable to map fractures at one scale and
extrapolate spatial and statistical geometric properties to larger and smaller scales.

Once the fractal dimension of a pattern or object in nature is determined. it is possible
to model that pattern or object from a single generator. A generator is the fundamental
building block from which a fractal pattern or object is produced by iteratively replacing
cach piece of the generator with a reduced version of the generator. The task of deducing a
generator for a particular fractal pattern observed in nature is not casy. One approach is to
guess at the generator, as was done by King (1983) for the map pattern of traces of
subsidiary faults in the immediate vicinity of large-scale fault bends. To simulate fault
patterns, King (1983) proposed a nonoverlapping three-dimensional space-filling generator.
but he assumed that it was never fully formed. Crosscutting fractures are comimon on the
maps in Fig. 8.7, which suggests that a proper generator for modeling fracture trace
patterns is overlapping. The generator proposed by King (1983) was for faults that did not
overlap, and therefore it is not appropriate for patterns of crossing fractures. I have not
succeeded in finding a generator for modeling fracture trace maps. A most promising
method for deducing a fractal generator is the iterated function systems approach developed
by Barnsley and Demko (1985), which systematically deduces a fractal generator for a given
fractal object.

Paul Meakin (verbal communication) suggested that the behavior in Fig. 8.8 may not
represent fractal behavior but rather a smooth gradual crossover between power law scaling
with slopes of 1 and 2. If true. it is not appropriate to extrapolate the fractal dimension
beyond length scales measured for each map in Fig. 8.7. I propose that fractures are present
everywhere in rock. over many orders of magnitude in length scale, from microfractures to
megascopic fractures. Thus the correct dimension for fracture networks in rock is 3 in
volume space and 2 in planar (map) section. For the 17 fracture maps analyzed in Fig. 8.7,
the fractal dimensions of fracture traces do not exceed 1.7. [ suggest that the dimensions are
less than 2 because only those fractures with apertures sutficient to render them visible were
mapped. | propose that fracture networks are multifractal as a function of aperture, so that
as we include fractures of successively smaller aperture, the fractal dimension of a given
fracturc map approaches 2. Scaling of large-aperture fracture networks will yield fractal
dimensions less than 2. and such fractal dimensions correctly characterize scaling for
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16| f T 7
15t o =
14 T T T j
T
Dg 134" : . . J - - :
12 + Fractal dimension, cumulative 1 FIGURE 8.10. Plot of the box-flex fractal di-
1.1} T‘ mension versus fracture generation for the evo-
10‘{ = lution of the fracture trace map in Fig. 8.7h
! . ! . - [ . - N .
6.9 shown in Fig. 8.9, Curve shows fractal dimen-
1 2 3 4 5 6 R

FRACTURE GENERATION
(1=OLDEST, 6=YOUNGEST)

sion of cumulative pattern as cach succeeding

ceneratton s added.

studies of fluid flow through fracture networks. However calculations of storativity in
fracture networks should assume a dimension of 3 in volume space and 2 in planar section.

§.9. CONCLUSIONS

Fractal dimensions for scaling and spatial-clustering of fractures along drill holes
prove to be random Cantor dusts with fractal dimensions ranging from 0.42-0.62 over a
range of four orders of magnitude. The fractal dimensions for scaling and spatial clustering
of fracture trace maps range from 1.38-1.70 over nearly ten orders of magnitude in length
scale. A fracture network sampled by both drill holes and mapping a planar outcrop
revealed fractal dimenstons of 0.50 and 1.48. respectively, nearly an integer dimension
difference, as is expected for disordered, nonsymmetric, statistically self-similar fractal
patterns. This result suggests that extrapolating from one-dimensional samples to planar or
volumetric dimensional samples is not unrcasonable for fracture networks. The change of
fractal dimension from the iterative addition of new fractures during the evolution of
fracturc nctworks ts investigated by disarticulating and then reconstructing the evolution
of a fracture trace map. Analysis reveals that the fractal dimension of the network increases
with the addition of cach successive gencration of fractures. Thus the fracture network
exhibits multifractal behavior with time. The evolution of {racture networks is proposed as a
physical model for constructing synthetic fracture networks. A fractal dimension of 1.351s
found for an cvolving fracture tracc nctwork at or just beyond the percolation threshold.
There is no three-dimensional (volumetric) analysis because of a lack of data.
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